Evaluation of a Numeric Procedure for Flow Simulation of a 5x5 Pwr Rod Bundle with a Mixing Vane Spacer
نویسندگان
چکیده
The fuel assemblies of the Pressurized Water Reactors (PWR) are constituted of rod bundles arranged in a regular square configuration by spacer grids placed along its length. The presence of the spacer grids promote two antagonist effects on the core: a desirable increase of the local heat transfer downstream the grids and an adverse increase of the pressure drop due the constriction on the coolant flow area. Most spacer grids are designed with mixing vanes which cause a cross and swirl flow between and within the subchannels, enhancing even more the heat transfer performance in the grid vicinity. The improvement of the heat transfer increases the departure from the nucleate boiling ratio, allowing higher operating power in the reactor. Due to these important thermal and fluid dynamic features, experimental and theoretical investigations have been carried out in the past years for the development of spacer grid design. More recently, the Computational Fluid Dynamics (CFD) using three dimensional Reynolds Averaged Navier Stokes (RANS) analysis has been used efficiently for this purpose. Many computational works have been performed, but the appropriate numerical procedure for the flow in rod bundle simulations is not yet a consensus. This work presents results of flow simulations performed with the commercial code CFX 11.0 in a PWR 5x5 rod bundle segment with a split vane spacer grid. The geometrical configuration and flow conditions used in the experimental studies performed by Karoutas et al. were assumed in the simulations. To make the simulation possible with a limited computational capacity and acceptable mesh refinement, the computational domain was divided in 7 subdomains. The subdomains were simulated sequentially applying the outlet results of a previous subdomain as inlet condition for the next. In this study the k-ε turbulence model was used. The simulations were also compared with those performed by Karoutas et al. in half a subchannel and In et al. in one subchannel computational domains. Comparison between numerical and experimental results of lateral and axial velocities along of the rod bundle show good agreement for all evaluated heights downstream the spacer grid. The present numerical procedure shows better predictions than Karoutas et al. model especially further from the spacer grid were the peripheral subchannels have more influence in the average flow.
منابع مشابه
Numerical Evaluation of Flow through a 5x5 Pwr Rod Bundle: Effect of the Vane Arrangement in a Spacer Grid
Spacer grids along the fuel assembly of Pressurized Water Reactors (PWR) maintain rod bundles arranged in a regular square configuration. The mixing vanes present in the spacer grids promote cross and swirl flow between and within the subchannels, enhancing the heat transfer performance in the grid vicinity, but also causing an adverse increase of the pressure drop in the rod bundle due the con...
متن کاملTurbulence Model Evaluation in 5x5 Pwr Rod Bundle Numerical Simulations with a Split Vane Spacer Grid
This work presents results of flow simulations performed with the commercial code CFX 11.0 in a PWR 5x5 rod bundle segment with a split vane spacer grid. The geometrical configuration and flow conditions used in the experimental studies performed by Karoutas were assumed in the simulations. To make the simulation possible with a limited computational capacity and acceptable mesh refinement, the...
متن کاملThermo-Hydraulic Investigation of Nanofluid as a Coolant in VVER-440 Fuel Rod Bundle
The main purpose of this study is to perform numerical simulation of nanofluids as the coolant in VVER-440 fuel rod bundle. The fuel rod bundle contains 60 fuel rods with length of 960 mm and 4 spacer grids. In VVER-440 fuel rod bundle the coolant fluid (water) is in high pressure and temperature condition. In the present Thermo-hydraulic simulation, water-AL2O3 nanofluids containing various vo...
متن کاملA Second Order Turbulence Model Based on a Reynolds Stress Approach for Two-phase Boiling Flow and Application to Fuel Assembly Analysis
High-thermal performance PWR (pressurized water reactor) spacer grids require both low pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling, entrainment of bubbles in the wakes, recondensation) are required. In the field of fuel assembl...
متن کاملComparisons of Experimental and Simulated Velocity Fields in Membrane Module Spacers
Spacers are used in spiral wound and plate and frame membrane modules to create flow channels between adjacent membrane layers and mix fluid within the flow channel. Flow through the spacer has a significant beneficial impact on mixing and resulting mass transfer rates but is accompanied by an undesirable increase in pressure drop. Computational Fluid Dynamics (CFD) is a common tool used to eva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009